
Software Metrics for Small Database Applications

Sana Abiad, R a m z i A. Haraty, and Nasha t Mansour
Lebanese American University

P.O. Box 13-5053
Beirut, Lebanon

Email:[rharat'y, nmansour @beirut . lau.edu.lb }

ABSTRACT

Known software metrics for estimating complexity
and effort are usually based on lines of code or the
program's flowgraph. Such metrics are suitable for
large-scale procedural or object-oriented software
applications. In this work, we propose a new
complexity metric, called DataBase Points (DBP), that
is suitable for small-scale relational database business
applications developed in the MS-ACCESS (ACCESS
is a trademark of Microsoft Corporation) or similar
environments. DBP is constructed from components
that are derived from typical ACCESS design. Further,
DBP is used to estimate the effort needed to develop
such software. The results of applying this new metric
to a number of applications show that it is promising
and that it captures the complexity features of small
database applications.

KEYWORDS

Software Metrics, Function Points, Effort Estimation,
and Complexity Metric.

1. I N T R O D U C T I O N

Effective software project management requires
measuring attributes of the software process and
product. Such measurement would make project
managers better informed about issues such as
delivery time, effort, cost, and resources. Software
measurement is essential to good software engineering
since "you can not control what you can not measure".

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and or
fee.
SAC'00 March 19-21 Como, Italy
(e) 2000 ACM 1-58113-239-5/00/003>...>$5.00

Software metrics are based on measurement and are used to
help developers predict, understand, control, and improve
both the development process and the software product [6].
Many metrics have been proposed for design, quality,
testing complexity, maintenance cost, and code
complexity [9, 15]. In particular, complexity and effort
estimation metrics include: McCabe's cyclomatic number
[13], Halstead's software science [16], function points
[2,5,11], COCOMO's technique [4], SLIM's technique
[14], and regression-based models [3].

All these metrics apply to procedural or object-oriented
large-scale software applications. Only very recently,
small-scale applications were considered [8,11] and none of
the known metrics apply directly to relational database
applications. In particular, all metrics that are based on
lines of code or program's control flowgraph are not
applicable to~ database programs.

In this paper, we are concerned with small-scale business
applications that are developed in the relational database
MS-ACCESS environment. We propose a new metric,
called DataBase Points (DBP), which can be used in the
design phase. This metric reflects the functionality and
complexity of an ACCESS application and is used to
estimate the effort required for implementing such
applications. We empirically evaluate this metric by
applying it to a number of small-scale business
applications and comparing its results with those obtained
from function points and with the real measured effort. The
results obtained are promising.

This paper is organized as follows. Section 2 constructs the
DBP metric and shows its components. Section 3 presents
the aggregate metric and the effort estimation expression.
Section 4 gives the empirical results. Section 5 concludes
the paper.

2. COMPONENTS OF THE DATABASE METRIC

The design of MS-ACCESS relational database
applications is typically based on five categories: tables,
relationships, forms, and reports [7]. These categories can
be classified as simple, average, or complex. We use these
categories and their classification to construct a metric,
called database points (DBP), for the complexity of MS-
ACCESS applications. The five components and the factors
that contribute to their complexity classification are briefly

866

described in the following subsections. For a more
detailed description of these factors, see [1].

2.1. T A B L E S

Tables are the objects that store data in a database.
Setting these tables include defining the properties of
each table, setting all the fields in the tables, and
defining properties for each field. The factors that
influence the classification of this category (Simple,
Average, and Complex) are the following:

Number of Fields per Table: It is the number
of fields defined in each table. The number of
fields is a measure of the effort and time a
programmer may spend on setting a certain
table. As the number of fields increases, so
do the time and effort of a programmer.

Properties per Field: It is the type of
properties that are defined for each field.
Some properties are set by default. At the
stage of translating the Entity Relationship
diagram, the properties of the field can be set.
Field properties can be divided into two
groups. The first group helps in defining the
overall picture of the field, while the second
enforces restrictions on the field as a whole.
Some properties will increase the complexity
of this category more than others will.

Table Properties: It is the type of properties
that are defined for each table. Some
properties will increase the complexity than
others.

2.2. RELATIONSHIPS

Relationships correspond to the distinct relations
connecting any two tables defined in the Entity
Relationship diagram. Defining a relation between two
tables include defining the fields that make the
relation, setting the type of the relationship and setting
the properties that define these relations. The factors
that influence the classification of this category are the
following:

Type of Relationship: Any relationship
defined in ACCESS could be one of the
following: A) One-to-One which is used
when information has to be kept for each
record, usually in numerous fields. B) One-
to-Many which reflects a hierarchy of details,
with a parent record containing information
about a group of items and each item having
details stored in a separate table. C) Many-to-
One which reflects a hierarchy of details.

Properties of Relationship: It is the type of
properties that are defined for each
relationship. Relationship properties enforce

restrictions on the related table. Some properties
will increase the complexity of this category more
than others will. These properties include A)
Enforce Referential Integrity which ensures that
relationships between records in related tables are
valid. This prevents the user from accidentally
deleting or changing related data. B) Cascade
Update Related Fields which affects the change of
the "many" side of a relationship, so the records in
the detailed table are not left orphaned. C)
Cascade Delete Related Records, which when
selected, the deletion of the record on the "one"
side forces the deletion of the records on the
"many" side.

2.3. TRANSACTIONS

Transactions correspond to the number of distinct
transactions defined in the database. Any transaction could
retrieve, update, or delete data from one or more tables.
Defining a transaction includes defining the type of the
transaction, the tables that are needed to retrieve data, and
setting properties of each transaction. The factors that
influence the classification of this category are the
following:

Type of Transactions: In ACCESS, there are a big
number of transactions. Even though several
different variations of transactions may be created,
there are only two types of transactions that could
be could be categorized into select transactions or
action transactions.

Properties of Transactions: It is the type of
properties that are defined for each transaction.
Some properties will increase the complexity of
this category more than other properties.

2.4. FORMS

Forms correspond to the number of distinct forms that are
defined in any database. They constitute the fundamental
interaction between the ACCESS database and the end
user. Forms guide the user through the operation of the
application, protect the underlying data from accidental
damage, and provide a level of security control i f
necessary. Simple forms can be created through ACCESS
wizards. By taking the developer through the initial steps of
form generation, wizards provide the initial skeleton upon
which to build. Users can perform a large number of
modifications to the resulting form, and these changes are
the main metrics at this step.

Setting a form includes describing the query or table that
acts as the source for the data to be retrieved, displayed, or
added. It also includes describing function keys, adding
effects, adding shapes and lines, and adding graphics. The
factor that determines the classification of this category is
the type of modifications done to any form.

867

Forms can be created using wizards or without
wizards. The majority of forms that we encountered
and the easiest way of setting a form are to move
controls (if using wizards) or moving controls. These
controls are concerned with the way the fields are
displayed. The more difficult way of setting a form is
concerned with adding special effects to the form
(shapes, lines, etc.).

2.5. REPORTS

Reports correspond to the number of distinct reports
that are defined in a database. Defining a report
includes defining the query or table that acts the
source of retrieving information, changing the
controls, and performing some programming on
certain events. The factor that influences the
classification of this category is the type of changes to
the report.

Printing a report from ACCESS is often the final
result of the database effort. No matter how great a
user interface is, printed output is more
comprehensible to most people. Even though reports
can be simply rows and columns of text, people have
high expectations for how a report will look. Forms
and reports are very similar in how they manipulate
controls, sections, and properties.

Reports could be created using wizards based on the
result of a query or on a table. The result of this report
wizard is a report that could be modified as the
requirements specify. The simplest way of modifying
a report is only to change or size controls that are
available in the report. If more changes were needed,
then this would be more complex (and could be
classified as Average); these changes deal with the
properties of the reports and adding expressions that
are concerned with the display of the fields. The most
difficult changes are those concerned with adding
programmable events to the report.

3. AGGREGATE D A T A B A S E METRIC AND
EFFORT E S T I M A T I O N

3.1. DATABASE POINTS AND E F F O R T

The five categories of database applications, which are
described in the previous section, are grouped together
to construct an aggregate complexity metric, which we
call DataBase Points (DBP). Table 1 shows how the
DBP metric is computed, where the software engineer
has to fill in the required values based on the design
information. Clearly, our methodology for
determining the DBP is analogous to that for
determining the well-known Function Points [5]. In a
similar way, we use DBP to estimate the effort needed
for implementing the database software. The effort
involves eight adjusting factors that are derived from
typical ACCESS programming. This effort expression
is

Effort = DBP * (0.2 + 0.01 * ~ F i) (I)

where F i is the weight given to each of the adjusting
factors (i = 1, 2 8). These factors are explained in the
next subsection. The implementation effort includes coding
and testing and is given in Person-Days (8 hours day).

Category Simple Average Complex

Tables [I * 7 + I I * 10+ I - - I * ~5 = I I

Relationships I I " 2 + [["3 + [I "5 = I I

Transactions I I " 5 + [I "7 + I I " 1 0 = [I

F o ~ I I " 4 + I] "5 + I I *7 = I]

Reports ~ " 4 +] I "5 + I I *7 = I I

DBP (Sum) I [

Table 1 Computing the DBP Metric.

The weights shown in Table 1 are borrowed from the
Function Point metric with some adaptation to database
software. These weights can be considered as the time unit
a programmer spends when setting a category. These
weights are adapted as follows:

Weights for Tables were more than weights for other
categories, since setting a table includes several steps.
While Relationships category was given less weights,
since defining a relationship requires less time.

When a category was considered to be as complex as a
category that was defined in Function Point metric, the
weights for simple, average, and complex were
borrowed exactly without any modifications. For
example, the weights for number of files are 7, 10, 15
for simple, average and complex, respectively. These
weights were borrowed exactly the same for Tables
since they were considered to be of the same
complexity with respect to their metric.

Relationships were given the least weights since they
only include setting the type of relationship and its
properties. However, weights for Transactions were
fewer than those for Tables but higher than Forms and
Reports since setting a transaction requires more time
and effort.

Reports and Forms were given exactly the same
weights because they are of same complexity. Both
include changes to the controls, modification to the
overall report or form, and some programming effects
could be applied at request.

After setting the weights for each category, all these
weights are summed up in Equation (1). This equation
resembles the Function Point formula [5] but with
modification to the constants. To empirically determine
these constants, we collected six ACCESS applications for

868

which we knew the effort required from the
programmer. Then, we applied suitable weights to
Table 1 to compute DBP and used best-fit techniques
on the effort-application curve to set the coefficients in
Equation (1) to 0.2 and 0.01.

3.2. ADJUSTING FACTORS

Based on the nature of ACCESS database programs,
we use eight adjusting factors. Each of them can be
given a weight that ranges from 0 to 5, where the
software engineer determines the particular value. The
factors and the associated weights are based on the
following questions:

• Ft. Does the system have an interface with Visual
Basic or any other interface?

• F2. What is the rate of the programmer's
experience in ACCESS?

• F3. Did the programmer use wizards and to what
rate?

• F4. Does the system take networking into
consideration?

• Fs. Does the system provide help for users?

• F6. Is the system designed for centralized or
distributed processing?

• F7. Did the programmer use Visual Queries or
Issue Queries?

• Fs. Did the Access application use Windows
APIs?

These factors add to the complexity and the effort
required to implement an ACCESS application.
Clearly, they involve aspects that apply directly to
Access project; they vary from the programmer and
his experience to the system itself. Each of the
adjusting factors could be empirically given a weight,
which ranges from 0 to 5. The sum of the factors'
weights will be used in equation (1); hence, this sum
could vary from 0 to 45.

4. EMPIRICAL RESULTS

To test the DBP metric, we use six small applications
developed by senior university students for different
businesses. In this section, we consider one
application (hospital application) in detail and then
tabulate the results for six applications. We compare
the DBP results with those of function points and the
real effort.

Table 2 summarizes our results for six ACCESS
applications. It gives a comparison between the
estimated effort based on DBP, the approximate real
effort, and the effort based on Function Points. All the

efforts are in Person-Days.

Table 2 shows that the error in the estimated DBP-effort
ranges from 24.8% to 127.7% for the considered set of
applications. This is an acceptable range for two reasons.
Firstly, it is well known that effort estimation errors are
large and different estimation models can yield values that
are enormously different [10]. Secondly, the set of
applications used for best fitting the coefficients' values in
Equation (1) is small. Thus, large errors in the results are
expected.

However, the DBP-effort estimates are consistently better
than the Function Point-effort estimates. This validates our
hypothesis that known metrics are not suitable for small
database projects, whereas the DBP metric is designed
specifically for such projects.

Our results in Table 2 involve a small set of projects.
Clearly, we need a larger set to tune the values of the
coefficients in Equation (1) (currently 0.2 and 0.01). This
will allow better validation of the DBP-effort estimation.

Application Real DBP DBP FP FP
Effort Effort Error Effort Error

% %
Hotel 20 138.88 94.4 68.9 244.5
LAU Lab. 20 25.2 26 57.85 189.3
Pharmacy 20 24.96 24.8 73.45 367.3
Restaurant 20 25.2 26 68.25 241.3
Video Shop 20 I 45.54 127.7 88.4 342
Hospital 90 !149.8 66.4 245.7 173

Table 2 Summary of the Results.

5. CONCLUSION

We have proposed a new metric, called Database Points
(DBP), for the complexity and effort estimation of small
database business software projects. This metric is
constructed from components that make up typical
relational database programs.

We have applied the DBP-based effort equation to a few
business applications and compared its estimate with the
real effort as well as function points-based estimate. The
results show that DBP is more suitable than function points
for estimating the effort required for database applications
and that the DBP-based effort values lie within the usual
margin of error. Therefore, the DBP results are promising,
although further work is required to improve the values of
the coefficients used in the effort equation. Employing a
large set of projects in best fitting the coefficient values can
do this.

REFERENCES

[ll Abiad S. 1999, Software Metrics for Small
Database Applications, Master's Thesis.
Lebanese American University, Beirut.

[2] Albrecht A.E. and Gaffney J.E. 1983,
"Software function, lines of code, and

869

[3]

[4]

[51

[6]

[7]

[8]

[9]

[lO]

I l l]

[12]

[13]

[14]

[15]

development effort prediction: a software
science validation", IEEE Transactions on
Software Engineering, 9(6), pp. 639-647.

Bailey J.W. and Baisili V.R. 1981, "A meta-
model for software development resource
expenditure", Proceedings of the 5 th Int.
Conference on Software Engineering, IEEE
Computer Society Press, pp. 107-116.

Boehm B.W., Clark B., Horowitz E. et al.
1995, "Cost models for future life cycle
processes: COCOMO 2.0", Annals of
Software Engineering 1, pp. 1-24.

Dreger B. 1989, Function Point Analysis,
Prentice-Hall.

Fenton N. E. and Pfleeger S. 1996, Software
Metrics A Rigorous Approach and Practical
Approach, International Thomson Computer
Press, London.

Gifford D. 1998, Access 97 Unleashed, Sams.

Grable R., Jernigan J., Pogue C., and Divis D.
1999, "Metrics for small projects: Experiences
at the SED", IEEE Software, March/April, pp.
21-29.

Henderson-Sellers B. 1996, Object-Oriented
Metrics Measures of Complexity, Prentice
Hall, New Jersey.

Kemerer C. 1987, "An empirical validation of
software cost estimation models",
Communication of the ACM, 30(5), pp. 416-
429.

Kautz K. 1999 , "Making sense of
measurement for small organizations", IEEE
Software, March / April 1999, pp. 14-20.

Matson J., Barrett B., and Mellichamp J. 1994,
"Software Development Cost Estimation
Using Function Points", IEEE Trans. Software
Engineering, Vol. 20, No.4, April 1994, pp.
275-287.

McCabe T.J. 1976, "A Complexity Measure",
IEEE Transaction on Software Engineering,
2(4), pp. 308-320.

Pumam L.H. 1978, "A general empirical
solution to the macrosoftware sizing and
estimating problem", 1EEE Transactions on
Software Engineering, pp. 345-361.

Shepperd M. 1993, Software Engineering
Metrics, McGraw-Hill International.

[16] Shen R., Conte S. and Dunsmore H. 1983,

"Software Science Revisited: A Critical
Analysis of the Theory and Its Empirical
Support", IEEE Transactions on Software
Engineering, No. 2, pp. 155-165.

BIOGRAPHY

Sana Abiad received her B.S. degree in Computer Science
from the American University of Beirut, and her M.S.
degree in Computer Science from the Lebanese American
University. Her research interests include database systems
and software engineering.

Ramzi A. Haraty is an Assistant Professor of Computer
Science at the Lebanese American University in Beirut,
Lebanon. He received his B.S. and M.S. degrees in
Computer Science from Minnesota State University -
Mankato, Minnesota, and his Ph.D. in Computer Science
from North Dakota State University - Fargo, North Dakota.
His research interests include database systems, artificial
intelligence, and multilevel secure systems engineering. He
has well over 35 journal and conference paper publications.

Nashat Mansour is an Associate Professor of Computer
Science at the Lebanese American University in Beirut,
Lebanon. He received his B.E. and M.S. degrees in
Electrical Engineering from the University of New South
Wales, Australia, and M.S. in Computer Engineering and
Ph.D. in Computer Science from Syracuse University, New
York. His research interests include software testing,
metrics, and maintenance, and evolutionary algorithms. He
is a member of lASTED and is on the executive committee
of the Lebanese Association for the Advancement of
Science.

870

